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C H A P T E R  1  

Introduction 

BACKGROUND 
Infrastructure management systems (IMS) help agencies develop the most effective maintenance, 
repair, and rehabilitation (MR&R) strategic plans to extend the lifetime of a set of infrastructure 
facilities. Identifying these optimal policies is not trivial due to the large number of possible actions 
over the lifetime of a facility, the probabilistic nature of infrastructure deterioration and impacts of 
MR&R activities, and the (tight) budget constraints that limit the decisions that can be made. 
However, systematic methodological approaches to infrastructure management that account for these 
issues have proven to both save DOTs money and extend the life of pavement and other facilities 
(e.g., bridges, pipelines, etc.). For example, Arizona’s initial pavement management system in the 
1980s (11) was found to save the Arizona DOT $14 million in the year it was implemented (15). 
Such savings allow for more MR&R activities to be performed, maximizing the impact of a fixed 
budget at preserving infrastructure.  
 
Existing methodological IMS approaches consider multiple measures when identifying optimal MR&R 
decisions and treat these in different ways. The simplest IMS methods identify the optimal MR&R decisions 
that minimize the total sum of costs experienced over the lifetime of the infrastructure facilities being 
considered. These costs are typically made up of costs to the agency managing the infrastructure and costs 
to users. More advanced IMS frameworks employ bi-objective optimization models that consider agency 
cost and user cost independently. Both approaches generally take into consideration the costs that are simple 
to quantify based on previous experience, data and/or model availability. For example, agency costs 
included in IMS consist of costs for individual MR&R decisions based on historical agency data. User costs 
typically include vehicle operating costs (3) and travel delay costs (10) for which cost quantification 
methods as a function of the pavement conditions have been developed.  
 
However, these existing approaches neglect the impact of infrastructure condition on safety performance, 
even though crashes can damage the transportation infrastructure and prematurely reduce its life and 
serviceability. This is perhaps because very few studies have quantified the impact of infrastructure 
condition on safety performance (1, 2, 7, 20, 23), and this relationship is a necessary component to 
incorporate into IMS. The few studies that have attempted to quantify this relationship do not utilize state-
of-the-art statistical methods for modeling safety performance. For instance, earlier studies aggregated 
crashes of all severity levels and developed a single statistical model that assumes homogenous impact of 
infrastructure conditions for different severity levels. In reality, infrastructure conditions can have different 
impacts on crashes of different severity levels (e.g., roads with lower friction levels might lead to more 
severe crashes). Also, earlier studies that focused on pavement conditions ignore spatial and temporal 
dependencies in crash patterns (5). For these reasons, a multi-objective optimization methodology including 
safety for optimizing MR&R decisions has yet to be developed. However, incorporating safety into MR&R 
decision-making can directly consider how infrastructure deterioration might influence safety performance, 
potentially reducing crashes and the associated damage to the infrastructure that they cause. This can help 
increase the serviceable lifetime of pavements or bridge decks. It can also expand an agency’s potential 
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funding pool for MR&R activities. For example, if an MR&R activity can also improve safety performance, 
an agency can use safety funds to support this project.  

OBJECTIVE 
The goal of this project is to develop a multi-objective optimization for IMS that can optimize MR&R 
decisions while simultaneously considering agency costs, total vehicle operating costs, and costs 
associated with safety performance. To do so, models that relate safety (e.g., crash outcomes) to the 
roadway condition (e.g., IRI) will be developed for Pennsylvania, and then used as input into a multi-
objective optimization framework. The results of this project can optimize how DOTs can utilize existing 
budgets for infrastructure management, as well as potentially expand the budget for MR&R activities.   
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C H A P T E R  2  

Integrating pavement roughness into safety 
performance 

INTRODUCTION 
 
Highway safety is a critical aspect of the transportation system. In 2019, there were approximately 6.76 
million police-reported crashes, resulting in 33,244 fatalities and more than 1.91 million injuries on 
highways and streets in the United States (1). Although fatalities and injured persons per 100 million vehicle 
miles traveled had been decreasing for four consecutive years since 2016, highway safety remains a large 
problem. Therefore, significant research efforts are needed to identify safety problems and identify 
solutions to make roadways safer.  
 
The Highway Safety Manual (HSM) provides a set of methods to help quantitatively analyze the safety 
performance of individual roadway facilities  (2). One set of tools currently available in the HSM are safety 
performance functions (SPFs), which relate the expected crash frequency of a roadway segment or 
intersection to traffic volumes, geometric characteristics (horizontal curvature, vertical curvature, cross-
sectional characteristics), roadside features, and presence of safety countermeasures. The development of 
SPFs can help analysts understand how changing/improving these features influences the expected number 
and severity of crashes at individual locations.  
 
The HSM provides a set of national level SPFs for various roadway facility types, but  agencies are 
encouraged to develop their own jurisdiction-specific SPFs to improve the accuracy of the predictions (3-
7). One aspect that is known to influence safety but generally missing from HSM SPFs and many 
jurisdiction-specific SPFs is the influence of roadway (or pavement) condition. For example, pavement 
friction directly impacts how well vehicles are able to maneuver on a roadway section (8-10). Wet 
pavements also do not offer the same level of maneuverability/stopping distance as dry pavements and thus 
are less safe (11, 12). For these reasons, pavement condition is likely a critical contributing factor to safety 
performance. Moreover, incorporating pavement condition into SPFs might not only improve estimates of 
safety performance but might also help both safety and pavement engineers make better decisions on when 
and where to apply maintenance activities to improve pavement condition—especially when limited 
resources are available. 
 
Several indicators have been defined to measure the pavement performance, such as International 
Roughness Index (IRI, a measure of pavement roughness), Pavement Condition Rating (PCR, a measure of 
pavement distress), Present Serviceability Index (PSI), and rutting depth (13). Researchers have used 
various data sources to model how pavement condition changes over time as roadways are used. For 
example, several studies (14,15) developed friction degradation models as a function of volumes, geometric 
characteristics, and speed. Perera et al. (16) performed a linear regression analysis between time sequence 
IRI values and pavement age to identify sections for which a linear relationship exists between those two 
variables. The study also developed models to predict IRI values at different General Pavement Study 
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(GPS) sections with variables such as precipitation, water/cement ratios, and traffic volume. A review of 
IRI prediction models can be found in (17). 
 
Studies on the effects of such pavement condition measures on safety performance exist since the late 
1990s. For example, many studies show that increasing IRI increases the total crash frequency (18-20). 
Chan et al. (21) found that crash frequencies generally increase as IRI increases or as PSI decreases, 
regardless of time of day and weather conditions. Chen et al., (22)  concluded that high IRI values increase 
the injury crash frequency on multi-lane highways in Indiana. The relationship between pavement condition 
and the frequencies of different crash types has been investigated as well. For example, (23) found that an 
increase in IRI value would decrease the likelihood of  single-vehicle crashes. One possible explanation is 
that rough roads affect driving quality, forcing drivers to decrease speeds and likely pay more attention to 
the driving task. On the other hand, the rate of multi-vehicle crashes tends to increase as IRI value increases.  
 
Research has analyzed the safety effects of pavement resurfacing activities on different crash types. Abdel-
Aty et al. (24) found that resurfacing projects reduced total, severe, and rear-end crashes on multilane 
arterials with partially limited access.  Zeng et al. (25) found that pavement resurfacing in Virginia reduced 
fatal and injury crash frequency by 26% but did not significantly change total crash frequency. Park et al. 
(26) applied a comparison group method and found that in the first year after pavement resurfacing projects, 
total crash frequency reduced by 23.4% and fatal and injury crash frequency reduced by 31.2% in Florida. 
The results indicate that pavement resurfacing was more effective to reduce severe crashes. 
 
This present study seeks to  provide more understanding on the relationship between pavement condition 
and  safety performance on two-lane rural roadway segments in Pennsylvania and use this information to 
understand the safety impacts of pavement maintenance activities. Negative binomial regression is used to 
estimate SPFs for three types of crash frequencies:  total, fatal+injury, and rear-end crashes. Furthermore, 
a pavement deterioration model is developed using linear regression to describe how pavements would 
deteriorate with use. The deterioration model is then combined with the SPFs to demonstrate how pavement 
maintenance activities may influence safety performance. The results of the work can be used to 
demonstrate how regular maintenance can be considered as another means to improve safety performance 
and make roadways safer.  
 
The remainder of this report is organized as follows. First, the data used to develop the SPFs and pavement 
deterioration model are described. Then, the statistical modeling methodologies and metrics to assess the 
goodness of fit of those proposed models are presented. Next, the results of the SPFs and pavement 
deterioration model are provided. This is followed by a discussion of deterioration impacts on safety. 
Finally, concluding remarks and potential directions for future work are offered.  

DATA 
This section describes the individual data sources used to develop the analysis databases for this study. 
These include roadway inventory, crash, and pavement condition data. Two unique analysis databases were 
developed: the first was used to estimate an SPF that relates safety performance with other roadway features 
(including pavement condition), and the second was used to estimate a model of pavement deterioration 
(i.e., how pavement condition changes over time).  

Data description and compilation 
Roadway and crash data used in this study were obtained from previous studies performed to estimate SPFs 
for two-lane, two-way rural roadway segments in Pennsylvania (27, 28). Roadway information was 
originally obtained from the Pennsylvania Department of Transportation (PennDOT) Roadway 
Management System (RMS) database, which provided information such as annual traffic volume (i.e., 
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AADT) and composition (i.e., truck percentage), cross-sectional information, segment lengths, and posted 
speed limits for PennDOT-defined roadway segments. These data elements were supplemented by manual 
data collection via Google Earth and PennDOT's online video photolog system. The manually collected 
data elements included roadside condition measured using the roadside hazard rating (RHR), presence of 
passing zones, presence of low-cost safety improvements (e.g., shoulder and centerline rumble strips), 
horizontal curvature, number of access points, and number of intersections. Note that RHR was 
incorporated using indicator variables for different RHR groupings with similar safety performance as 
identified in (28).  
 
Roadway information was merged with crash data available from PennDOT's Pennsylvania Crash 
Information Tool (PCIT). Crashes were matched to individual roadway segments using PennDOT's linear 
referencing system, which provides the location of crashes on state-owned roadways based on the county, 
state road number, segment ID, and offset along the segment. Three crash frequency metrics were 
considered in this study: total crashes, fatal and injury crashes, and rear-end crashes.  
The pavement condition considered in this paper was pavement roughness, measured using the International 
Roughness Index. The IRI information was obtained for the individual roadway segments from PennDOT's 
RMS database and appended to the existing datasets. Up to four unique IRI observations were available for 
a given segment per year. As part of the data compilation process, these repeated observations for a given 
year were aggregated to provide a single IRI estimate for every segment per year. The most straightforward 
way to do so was to simply average all non-zero values for a particular segment within a given year. 
However, for some segments, the IRI jumps up to a larger number (or jumps down to a smaller number) 
and then returns within the same year; an example of this is  shown in Figure 2.1. 
 
 

 
Fig 2.1 IRI values for County 1 Route 30, Segment 10, 

Such abnormal IRI values are likely to be erroneous. A simple rule was proposed to identify these errors: 
The maximum IRI value for a segment was assumed to be an error if the difference between the maximum 
value and the second-largest value was larger than 20. Likewise, the minimum IRI value was assumed to 
be an error if the difference between the second-smallest value and the minimum value was larger than 20. 
These errors were updated depending on the position of the error within the database. If the error appeared 
in the first (last) record, it was filled backward (forward). Otherwise, the error was replaced by the average 
of two adjacent non-zero values. After processing the data as described, the proposed criteria were applied 
to re-check for errors. If additional errors were observed, the updating procedures were performed again. 
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After cleaning the errors, the IRI value for a segment-year combination was then set to be the average of 
all non-zero values for that year. For cases in which all IRI values were zero for a given year, these segments 
were removed from the database.  

Table 2.1. Crash, traffic volume, and site characteristic data summary for two-lane rural roadway 
segments in 2015-2018. 

 Mean SD Minimum Maximum 
Total crashes per year 0.611 1.065 0 22 
Fatal+injury crashes 
per year 

0.281 0.635 0 12 

Rear-end crashes per 
year 

0.097 0.397 0 12 

AADT 3014.6 2749.9 55 25,535 
Segment length 0.475 0.126 0.013 1.267 
Horizontal curve 
density 

2.318 2.522 0 42.581 

Degree of curvature 
per mile 

19.089 44.148 0 1,263.475 

Access density 119.055 52.154 29 863 
IRI 119.055 52.154 29 863 
Categorical 
Variables 

Category Proportion 

Roadside hazard 
rating 

1, 2, 3 5.4 
4, 5 74.7 
6, 7 19.9 

Presence of passing 
zone 

Yes 28.5 
No 71.5 

Presence of shoulder 
rumble strips 

Yes 8.0 
No 92.0 

Engineering District 1 11.1 
2 16.3 
3 13.9 
4 9.2 
5 5.7 
6 1.8 
8 13.0 
9 10.5 

10 8.8 
11 2.4 
12 7.3 

SPF development database 
Crash data for the last four available years (2015-2018) were selected for the SPF development database to 
consider only the most recent conditions when modeling safety performance. The SPF development 
database contained a total of 48,099 crashes across the four-year period observed across 19,691 unique 
segments. Among these crashes, 15.9% were rear-end crashes. Table 2.1 provides summary statistics of 
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total crashes, fatal+injury crashes, rear-end crashes, traffic volume, and the roadway and roadside 
characteristics included in the SPF development database. 

Pavement deterioration database 
A separate analysis database was developed to estimate a model of pavement deterioration. For this 
database, segments-year combinations only with increasing IRI values over time were considered to avoid 
the impacts of possible maintenance activities, which were not available from PennDOT. For each segment, 
the longest and most recent period of increasing IRI values across the years 2006 through 2018 were 
identified and included in the database. The minimum and maximum periods of time with increasing IRI 
are 2 and 12 years, respectively. The result was a final pavement deterioration modeling database that 
included 71,351 records from years 2006 through 2018. Potential explanatory variables in this database 
included traffic volume (split between car volume and truck volume, to evaluate the effect of different 
vehicle types on pavement deterioration), pavement condition in the previous year, and access density. A 
summary of the database used for the deterioration model is provided in Table 2.2. 

Table 2.2. Summary of database used for the deterioration model for 2006-2008. 

 Mean SD Minimum Maximum 
IRI for year i+1 117.022 47.286 30 472 
IRI for year i 111.760 44.773 27 472 
AADT of car 2,918.348 2,602.665 51 24,258 
AADT of truck 277.767 315.193 0 6,391 
Access density 16.330 13.919 0 240 

METHODOLOGY 
This section describes the methods  used in this section. The first subsection provides details on the 
statistical modeling methodologies that were applied to estimate the SPF and pavement deterioration 
models, while the second describes the metrics used to assess the goodness of fit of those proposed models. 

Statistical modeling approaches 

Negative Binomial (NB) regression 

NB regression was used to estimate the safety performance function that relates observed crash frequencies 
with traffic volumes, geometric features, and pavement condition. NB regression is a count regression 
modeling approach that addresses over-dispersion commonly found in crash data, in which the variance of 
the reported crash frequency exceeds the mean (29-31). A variety of cross-sectional extensions have been 
proposed to estimate SPFs that take advantage of the panel nature of most safety analysis databases (i.e., 
the presence of repeated observations from the same segment across multiple years). Examples include 
mixed or random effects, NB regressions, and models with random parameters (18, 32-35). However, NB 
regression was chosen in this study to be consistent with the model development approach used to estimate 
SPFs in the first edition of the Highway Safety Manual. Furthermore, recent studies have shown that the 
performance of these more advanced approaches is consistent with traditional NB regression when applied 
to segments not used to directly estimate the models, as would be with HSM-type SPFs (36). The output of 
the NB model has the following general form: 
 

𝐥𝐥𝐥𝐥 𝝀𝝀𝒊𝒊 = 𝜷𝜷𝑿𝑿𝒊𝒊 + 𝜺𝜺𝒊𝒊 (2.1) 
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where 𝜆𝜆𝑖𝑖 is the expected number of crashes at segment 𝑖𝑖;  𝑋𝑋𝑖𝑖 is a set of 𝐽𝐽 independent variables including 
geometric design, traffic volume, and other site-specific data for segment 𝑖𝑖 (such as IRI, access density and 
horizontal curve density); 𝛽𝛽 is a vector of (𝐽𝐽 + 1) estimable regression parameters; and 𝜀𝜀𝑖𝑖 is a gamma-
distributed error term. In this study, we assume the SPF can be estimated using the following model 
specification: 
 

𝐥𝐥𝐥𝐥𝝀𝝀𝒊𝒊 = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑳𝑳𝒊𝒊 + 𝜷𝜷𝟐𝟐𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊 + 𝜷𝜷𝟑𝟑(𝑰𝑰𝑰𝑰𝑰𝑰 × 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊) + 𝜷𝜷𝟒𝟒𝑿𝑿𝟒𝟒𝟒𝟒 + ⋯+ 𝜷𝜷𝒋𝒋𝑿𝑿𝒋𝒋𝒋𝒋 (2.2) 
 
where 𝐿𝐿𝑖𝑖 is the roadway segment length for segment 𝑖𝑖; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the average annual daily traffic for segment 
𝑖𝑖; 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the product of IRI and AADT for segment 𝑖𝑖 and is calculated by 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖/106. The 
probability function that described the NB model is: 
 

𝐏𝐏𝐏𝐏(𝒚𝒚𝒊𝒊 = 𝒚𝒚) =
𝚪𝚪 �𝒚𝒚𝒊𝒊 + 𝟏𝟏

𝜶𝜶�

𝚪𝚪(𝒚𝒚𝒊𝒊 + 𝟏𝟏)𝚪𝚪 �𝟏𝟏𝜶𝜶�
�

𝜶𝜶𝝀𝝀𝒊𝒊
𝟏𝟏 + 𝝀𝝀𝒊𝒊𝜶𝜶

�
𝒚𝒚𝒊𝒊
�

𝟏𝟏
𝟏𝟏 + 𝝀𝝀𝒊𝒊𝜶𝜶

�
𝟏𝟏
𝜶𝜶

 
(2.3) 

 
where Γ (∙)is the gamma function, 𝑦𝑦𝑖𝑖 is the observed crash outcome for segment 𝑖𝑖, and 𝛼𝛼 is the 
overdispersion parameter. The maximum likelihood method is applied to estimate the model parameters. 
Since the product of probability is usually too small to work with, the objective function is reformulated as 
maximizing the following quantity, commonly referred to as the log-likelihood function: 
 

𝑳𝑳𝑳𝑳 = �𝒍𝒍𝒍𝒍𝚪𝚪�𝒚𝒚𝒊𝒊 +
𝟏𝟏
𝜶𝜶
�

𝒏𝒏

− 𝒍𝒍𝒍𝒍𝚪𝚪�
𝟏𝟏
𝜶𝜶
� − 𝒍𝒍𝒍𝒍𝚪𝚪(𝒚𝒚𝒊𝒊 + 𝟏𝟏) + 𝒚𝒚𝒊𝒊 𝐥𝐥𝐥𝐥(𝜶𝜶𝝀𝝀𝒊𝒊)− (𝒚𝒚𝒊𝒊 +

𝟏𝟏
𝜶𝜶
𝐥𝐥𝐥𝐥 (𝟏𝟏 + 𝝀𝝀𝒊𝒊𝜶𝜶) (2.4) 

Linear regression 

The pavement deterioration model was developed using linear regression. The output of the linear 
regression model has the following general form: 
 

𝒚𝒚𝒊𝒊 = 𝜷𝜷𝑿𝑿𝒊𝒊 + 𝜺𝜺𝒊𝒊 (2.5) 
 
where 𝑦𝑦𝑖𝑖 is the dependent variable being modeled, 𝑋𝑋𝑖𝑖 is a set of 𝐽𝐽 independent variables, and 𝛽𝛽 is a vector 
of (𝐽𝐽 + 1) estimable regression parameters.  
 
In this study, a log-linear model is used where the dependent variable is incorporated using a log 
transformation. This is a common transformation for cases in which the dependent variable can only take 
positive values. The final model specification considered is: 
 

𝐥𝐥𝐥𝐥(𝑰𝑰𝑰𝑰𝑰𝑰𝒊𝒊) = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏 𝐥𝐥𝐥𝐥(𝑰𝑰𝑰𝑰𝑰𝑰𝒊𝒊−𝟏𝟏) + 𝜷𝜷𝟐𝟐𝒍𝒍𝒍𝒍𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒄𝒄𝒄𝒄𝒄𝒄 + 𝜷𝜷𝟑𝟑𝒍𝒍𝒍𝒍𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝜷𝜷𝟒𝟒𝑨𝑨𝑨𝑨 (2.6) 
 
where 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖−1 represent the pavement conditions in year 𝑖𝑖 and 𝑖𝑖 − 1, respectively;  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 and  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represent the annual car and truck volumes, respectively, and 𝐴𝐴𝐴𝐴 is the access density along 
the roadway segment.  Note that modeling the pavement condition in the current year as a function of the 
pavement condition in the previous year is common and helps account for the fact that pavement condition 
declines more rapidly as it gets worse (37). The model parameters are estimated using the ordinary least 
squares method. 
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Goodness of fit 

Root-mean-square-error and mean absolute error 

We use the following two metrics to assess the prediction accuracy of the proposed SPFs: root mean square 
error (RMSE) and mean absolute error (MAE). As shown in (7) and (8), both metrics quantify the difference 
between reported and predicted crash frequencies. In general, RMSE tends to emphasize outliers more 
strongly than MAE.  

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = �∑ (𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊 − 𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
 

(2.7) 

 

𝐌𝐌𝐌𝐌𝐌𝐌 =
∑ |𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊 − 𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
 

(2.8) 

 
where 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 is the predicted number of crashes for observation 𝑖𝑖; 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 is the reported number of crashes 
for observation 𝑖𝑖, 𝑛𝑛 is the number of observations.  A smaller RMSE indicates that the predicted crash is 
closer to the reported value, and the same applies for MAE. 
 
We also use RMSE and MAE to present the accuracy of the proposed deterioration model. Similar to (2.7) 
and (2.8), these metrics are calculated as shown in (2.9) and (2.10). 
 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 = �∑ (𝑰𝑰𝑰𝑰𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊 − 𝑰𝑰𝑹𝑹𝑹𝑹𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊)𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
 

(2.7) 

𝐌𝐌𝐌𝐌𝐌𝐌 =
∑ |𝑰𝑰𝑰𝑰𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊 − 𝑰𝑰𝑰𝑰𝑰𝑰𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊|𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏
 

(2.8) 

 
where 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 are the predicted and reported IRIs for the succeeding year for observation 𝑖𝑖. 

Normalized root mean square error 

We also apply normalized root mean square error (NRMSE) to evaluate the performance of multi-year 
predictions. There are different types of NRMSE out there that fall into two main camps: (1) normalization 
to a central moment of the data such as mean or median; and (2) normalization to the variance of the data 
(standard deviation, range, interquartile range). In this study, we normalize RMSE to its mean and standard 
deviation. They are denoted as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 
 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 is calculated by dividing RMSE with the average of IRI values. According to (38), model 
accuracy is considered excellent when 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 < 0.1, good if 0.1 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚< 0.2, fair if 0.2 < 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 
< 0.3, and poor if 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚> 0.3. And 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 is calculated by dividing RMSE with the standard 
deviation of the IRI values. 

Cumulative Residual (CURE) plots 

CURE plots are recommended by various researchers to assess the overall fit of an SPF (5, 39, 40). CURE 
plots can visually depict how good a model fits the observed data and help identify areas where values are 
consistently over- or under-predicted.  These plots illustrate the relationship between cumulative residuals 
(i.e., differences between reported and predicted crash frequencies) and another metric, such as the 
explanatory variables (segment length and AADT), and the crash frequencies. In this paper, we use CURE 
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plots that show the cumulative residuals as a function of predicted crash frequency to assess the goodness-
of-fit of the proposed SPF functional form with respect to predicted values. In general, CURE plot values 
that are close to and oscillate around zero represent better-fitting models. By treating the cumulative 
residual process as a random walk, confidence intervals can be estimated to determine if a specific CURE 
plot represents a good-fitting model, as described in (40). 

MODEL RESULTS 
In this section, we present the results of the estimated SPFs and pavement deterioration model. 

SPFs 

Model estimation results 

Two SPFs are estimated for each crash type considered. For comparison, the first model considers the effect 
of IRI, while the second does not. Different from the SPFs in (28),  indicators for PennDOT engineering 
district are included to account for the differences in safety performance across the entire state of 
Pennsylvania, which was found significant in previous studies (6). Table 2.3 provides the model estimation 
results. The two models estimated include the same explanatory variables, except for the IRI term. Similar 
to the previous SPFs developed for two-lane rural roadway segments in Pennsylvania, the coefficient 
estimates are in line with engineering expectations. Total crash frequency decreases with the presence of 
passing zones and shoulder rumble strips, but increases with segment length, AADT, horizontal curve 
density, degree of curvature per mile, and access density. Furthermore, we find that the estimated 
coefficients related to districts 5, 6 and 8 are positive. This suggests that the total crash frequency is higher 
in those districts. The over-dispersion parameter of both models is statistically greater than 0, suggesting 
that the NB model is more appropriate than a Poisson model to account for over-dispersion. The model 
with IRI has a larger value of log-likelihood, a smaller RMSE and similar MAE, which suggests that 
incorporating IRI into the SPF improves fit to the observed data. 
 
Table 2.4 provides the results for the estimated SPFs for the fatal+injury crash frequency. Similar to the 
SPFs for total crash frequency, the presence of passing zones and shoulder rumble strips reduces the 
frequency of fatal+injury crashes, while  fatal+injury crash frequency increases with segment length, 
AADT, horizontal curve density, degree of curvature per mile and access density. A new explanatory 
variable is included in this model, i.e., the indicator for District 1. The estimated coefficient indicates that 
fatal+injury crash frequency is lower in District 1 in both models. Again, the over-dispersion parameter of 
both models is different than 0. The model with IRI has a lower RMSE and MAE compared to the model 
without IRI. 
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Table 2.3. Proposed SPFs for total crash frequency for years 2015 through 2018. 

 With  
IRI 

With  
IRI 

With 
IRI 

Without 
IRI 

Without 
IRI 

Without 
IRI 

 Estimate Standard 
Error Pr > |z| Estimate Standard 

Error Pr > |z| 

Constant -5.6910 0.0789 < 0.001 -6.0118 0.0638 < 0.001 

Natural logarithm of 
segment length 0.8729 0.0192 < 0.001 0.8624 0.0192 < 0.001 

Natural logarithm of 
AADT 0.6985 0.0099 < 0.001 0.7440 0.0072 < 0.001 

IRI×AADT 1.290E-07 0.0192 < 0.001 - - - 
Presence of a 
passing zone -0.1256 0.0129 < 0.001 -0.1356 0.0128 < 0.001 

Presence of shoulder 
rumble strips -0.0989 0.0202 < 0.001 -0.1066 0.0201 < 0.001 

Roadside hazard rating 
of 6 or 7 0.1389 0.0267 < 0.001 0.1429 0.0267 < 0.001 

Roadside hazard rating 
of 4 or 5 0.1037 0.0240 < 0.001 0.1057 0.0240 < 0.001 

Horizontal curve density 0.0222 0.0028 < 0.001 0.0223 0.0028 < 0.001 

Degree of curvature 
per mile 0.0017 0.0001 < 0.001 0.0018 0.0001 < 0.001 

Access density 0.0062 0.0004 < 0.001 0.0064 0.0004 < 0.001 

Indicator for District 2 -0.1072 0.0189 < 0.001 -0.1086 0.0189 < 0.001 

Indicator for District 3 -0.1397 0.0194 < 0.001 -0.1466 0.0193 < 0.001 
Indicator for District 5 0.2990 0.0207 < 0.001 0.3214 0.0205 < 0.001 
Indicator for District 6 0.2265 0.0322 < 0.001 0.2631 0.0317 < 0.001 
Indicator for District 8 0.1683 0.0165 < 0.001 0.1727 0.0166 < 0.001 
Indicator for District 9 -0.0512 0.0211 0.016 -0.0524 0.0212 0.013 

Indicator for District 10 -0.1002 0.0211 < 0.001 -0.1065 0.0211 < 0.001 
Indicator for District 11 -0.1321 0.0357 < 0.001 -0.1396 0.0357 < 0.001 

Over-dispersion 
parameter 0.3837 0.3873 

Log-likelihood -75035.404 -75058.160 
RMSE 0.9282 0.9300 
MAE 0.6350 0.6349 
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Table 2.4. Proposed SPFs for total crash frequency for years 2015 through 2018. 

 With  
IRI 

With  
IRI 

With  
IRI 

Without  
IRI 

Without  
IRI 

Without  
IRI 

 Estimate Standard 
Error Pr > |z| Estimate Standard 

Error Pr > |z| 

Constant -6.3385 0.1109 < 0.001 -6.7220 0.0913 < 0.001 
Natural logarithm of 

segment length 0.8541 0.0269 < 0.001 0.8410 0.0268 < 0.001 

Natural logarithm of 
AADT 0.6800 0.0136 < 0.001 0.7349 0.0101 < 0.001 

IRI×AADT 1.513E-07 0.0255 < 0.001 - - - 
Presence of a 
passing zone -0.1282 0.0185 < 0.001 -0.1383 0.0184 < 0.001 

Presence of shoulder 
rumble strips -0.0913 0.0282 0.001 -0.0998 0.0282 < 0.001 

Roadside hazard rating 
of 6 or 7 0.1493 0.0371 < 0.001 0.1537 0.0372 < 0.001 

Roadside hazard rating 
of 4 or 5 0.1025 0.0334 < 0.001 0.1048 0.0335 0.002 

Horizontal curve density 0.0233 0.0039 < 0.001 0.0232 0.0039 < 0.001 

Degree of curvature 
per mile 0.0017 0.0002 < 0.001 0.0017 0.0002 < 0.001 

Access density 0.0069 0.0005 < 0.001 0.0071 0.0005 < 0.001 

Indicator for District 1 -0.0534 0.0321 0.097 -0.0684 0.0320 0.033 

Indicator for District 2 -0.1183 0.0290 < 0.001 -0.1259 0.0290 < 0.001 
Indicator for District 3 -0.1786 0.0296 < 0.001 -0.1925 0.0296 < 0.001 
Indicator for District 5 0.2857 0.0298 < 0.001 0.3088 0.0295 < 0.001 
Indicator for District 6 0.1506 0.0452 < 0.001 0.1910 0.0446 < 0.001 
Indicator for District 8 0.1570 0.0249 < 0.001 0.1565 0.0249 < 0.001 
Indicator for District 9 -0.0681 0.0317 0.032 -0.0748 0.0317 0.018 

Indicator for District 10 -0.1126 0.0315 < 0.001 0.1258 0.0315 < 0.001 

Indicator for District 11 -0.2353 0.0527 < 0.001 0.2502 0.0527 < 0.001 

Over-dispersion 
parameter 0.4536 0.4596 

Log-likelihood -48039.732 -48057.468 
RMSE 0.5872 0.5881 
MAE 0.3836 0.3838 
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Table 2.5. Proposed SPFs for rear-end crash frequency for year 2015 to 2018. 

 With  
IRI 

With  
IRI 

With  
IRI 

Without 
IRI 

Without 
IRI 

Without 
IRI 

 Estimate Standard 
Error Pr > |z| Estimate Standard 

Error Pr > |z| 

Constant -13.8301 0.2350 < 0.001 -14.6422 0.1838 < 0.001 

Natural logarithm of 
segment length 0.9145 0.0448 < 0.001 0.8870 0.0446 < 0.001 

Natural logarithm of 
AADT 1.4542 0.0283 < 0.001 1.5605 0.0206 < 0.001 

IRI×AADT 1.906E-07 0.0353 < 0.001 - - - 
Presence of a 
passing zone -0.1832 0.0319 < 0.001 -0.1959 0.0318 < 0.001 

Roadside hazard rating 
of 4 or 5 0.0560 0.0316 0.076 0.0556 0.0316 0.079 

Horizontal curve density -0.0271 0.0072 < 0.001 -0.0268 0.0072 < 0.001 

Degree of curvature  
per mile 0.0015 0.0004 0.001 0.0016 0.0004 < 0.001 

Access density 0.0163 0.0007 < 0.001 0.0166 0.0007 < 0.001 

Indicator for District 1 -0.3554 0.0571 < 0.001 -0.3650 0.0571 < 0.001 

Indicator for District 2 -0.2606 0.0480 < 0.001 0.2700 0.0571 < 0.001 

Indicator for District 3 -0.2238 0.0470 < 0.001 -0.2370 0.0470 < 0.001 

Indicator for District 4 -0.1928 0.0516 < 0.001 -0.1593 0.0511 0.002 
Indicator for District 5 0.1049 0.0435 0.016 0.1529 0.0424 < 0.001 
Indicator for District 6 -0.2407 0.0666 < 0.001 -0.1798 0.0655 0.006 
Indicator for District 9 -0.2771 0.0560 < 0.001 -0.2751 0.0560 < 0.001 
Indicator for District 10 -0.2656 0.0493 < 0.001 -0.2788 0.0493 < 0.001 
Indicator for District 11 -0.1736 0.0826 0.036 -0.1966 0.0827 0.017 

Over-dispersion 
parameter 0.6023 0.6106 

Log-likelihood -19888.532 -19902.738 
RMSE 0.3522 0.3521 
MAE 0.1438 0.1440 

 
Table 2.5 summarizes the results for SPFs for rear-end crash frequency. The variables related to road 
characteristics are the same, and their coefficients have the same sign compared to the previous two models. 
As for indicators for districts, only the one for District 8 is excluded from both models, and only the 
indicator for District 5 is positive. Like the other estimated SPFs, the model with IRI has a smaller RMSE 
and MAE, as well as a larger value of log-likelihood. 
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Cure Plots 

In this section, we present the CURE plots for the six SPFs introduced above; see Figure 2.2 through Figure 
2.4. In each figure, the blue line represents the cumulative residual for the model with IRI included, the red 
line represents the cumulative residual not accounting for IRI, the black lines are the confidence intervals 
associated with a random walk process when IRI is included, and the green lines are the confidence intervals 
without considering IRI.  
 
The CURE plots for total crash frequency (Figure 2.2) reveal that the model with IRI fits the observed data 
better than the one without IRI. Specifically, the cumulative residuals for the proposed model considering 
the effect of IRI almost all fall within the 95% confidence intervals and only leave this range for a small 
proportion of the observations (when the predicted total crash is around 2.5 and over 7.8). Thus, considering 
the metrics and CURE plot, the proposed SPF form with IRI provides a good fit to the observed total crash 
frequency data in years 2015-2018. 
 
The CURE plots for fatal+injury crash frequency (Figure 2.3) illustrate the same findings. The cumulative 
residuals for the proposed model only exceed the bounds for a small proportion of the observations (when 
the predicted fatal+injury crash is around 1.5 and over 3.9) when IRI is considered. Overall, these goodness-
of-fit measures suggest that the proposed model with IRI provides a better fit to the fatal+injury crash data 
in years 2015-2018. 
 
Figure 2.4 shows the CURE plots for two SPFs for rear-end crash frequency. Different from the two models 
above, the bounds are narrower if IRI is not included. For both models, the cumulative residuals mostly fall 
within the 95% confidence intervals when the predicted rear-end crash is less than 2. When the predicted 
value is higher than 2, the cumulative residuals for a large proportion of the observations fall outside the 
95% confidence interval bounds if IRI is not considered in the model. So, the proposed SPF functional form 
with IRI provides a better fit to the rear-end crash data. 
 

 
 

Figure 2.2 CURE plots for SPF for total crash frequency. 
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Deterioration model 

Results for the model estimation 

In this section, we provide information on the estimated deterioration model. We choose the natural 
logarithm of AADT of car and truck as separate independent variables because: (1) increasing traffic 
demand results in degradation of overall highway service capacity, and (2) the amount of damage imparted 
on the highway by cars and trucks is likely to be different (41). The other two explanatory variables are IRI 
in the current year and access density. The results are summarized in Table 2.6. The model fits the data 
well, with a very high R-squared value of 0.9998. All coefficients are positive, which suggests that IRI 
increases with car traffic, truck traffic, previous year IRI and access density. The coefficient for truck 
AADT (2.256e-03) is larger than that for car AADT (1.376e-03). This suggests that a unit increase in truck 
volume per day has a larger impact on IRI than the unit increase in car volune, which is reasonable and 
expected. 

 
Figure 2.3 CURE plots for SPF for fatal+injury crash frequency. 

 
Figure 2.4 CURE plots for SPF for rear-end crash frequency. 



 

 17 r3utc.psu.edu 

Table 2.6 Results for deterioration model. 

 Estimate Standard 
Error t-value Pr(> |t|) 

log(IRI1) 1.0046 3.2357E-04 3104.8191 < 0.001 
log(caraadt) 1.3760E-03 3.8417E-04 3.5818 < 0.001 
log(truckaadt) 2.2557E-03 3.8129E-04 5.9158 < 0.001 
Access density 6.5611E-05 1.7560E-05 3.7363 < 0.001 
Multiple R-squared: 0.9998 
Adjusted R-squared: 0.9998 
RMSE: 8.6344 
MAE: 5.3563 

Performance of multiyear prediction 

In this section, we examine how well the estimated model performs for multiyear prediction. In this case, 
the predicted IRI in year 𝑖𝑖 is used as an input into the model as the current year IRI to make predictions of 
IRI in future years (i.e., year 𝑖𝑖 + 1 and beyond). Figure 2.5a shows how RMSE and MAE change as the 
prediction interval increases. When the prediction interval is 1, the corresponding RMSE and MAE are 
8.6343 and 5.3566. The values of these error metrics increase as the prediction interval becomes longer. 
This is expected, as errors in the prediction would grow with time and lead to decreased predictive ability 
in the future. When the prediction interval reaches the maximum value (12), the RMSE is 33.3551 and the 
MAE becomes 26.5215. Figure 2.5b shows the trend for two NRMSE values. When the prediction interval 
is 1, the prediction is excellent, since 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚=0.0738$. The prediction is good for prediction intervals 
up to 9 years. When the prediction interval is longer than 9 years, the predictive ability becomes only fair. 
On the other hand, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 increases faster than 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 is 0.1826 when the interval is 1, 
and it reaches 0.6408 when the prediction interval is 12. So, the estimated model performs well when the 
prediction interval is no longer than 9 years. 
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(a) RMSE and MAE 
 

 

(b) NRMSE 

Figure 2.5 Performance of multiyear prediction. 
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DISCUSSION OF DETERIORATION IMPACTS ON SAFETY 
In this section, we will show how the safety performance for a given site is expected to change over time 
with and without considering the effects of pavement condition. The models developed in Section 4 show 
that crash frequency increases with the product of IRI and AADT (see Tables 2.3 and 2.4), and that IRI 
increases with AADT and access density if no maintenance activities are performed to improve the 
pavement condition.  
 
One segment was randomly selected to illustrate how expected safety performance would change when 
considering pavement condition compared to when it is ignored. The road characteristics were taken from 
Segment 180 on State Route 255 in Clearfield County. These characteristics are:   

• Segment length: 0.4837 mile. 
• Horizontal curve density: 4.1347. 
• Degree of curvature of per mile: 11.9644. 
• Access density: 2.0673. 
• Shoulder rumble strips: yes. 
• Roadside hazard rating: 6. 
• Demand profile: 15,000 veh/day for high AADT scenario, and 4,600 veh/day for low AADT 

scenario. 
• Truck percentage: 40% for high scenario, and 8% for low scenario. 

 
In addition, scenarios are considered with no maintenance activities in which the pavement condition is 
assumed to continuously deteriorate according to the model developed above and where maintenance 
(specifically, a resurfacing activity that reduces IRI to 90 as per records from PennDOT) is performed in 
year 2020. In all cases, traffic volumes are assumed to grow 1% per year.  
 
Figure 2.6a provides a comparison of safety performance over time for the scenarios with low traffic 
volume, while Figure 2.6b provides a comparison of safety performance over time for the scenarios with 
high traffic volume. Notice in both cases that when pavement condition is not considered in the prediction 
of safety performance, crash frequency increases nearly linearly over time as traffic volumes increase. Also 
notice that when pavement condition is considered, the predictions differ significantly from the predictions 
when pavement condition is not considered, and the differences are more substantial for roadway segments 
with higher traffic volumes. Furthermore, when pavement condition is considered, the rate of increase in 
predicted crash frequency is much higher than when pavement condition is not considered.  
 
Additionally, the two figures visually illustrate that maintenance actions can result in substantial 
improvements in safety performance by improving the pavement condition that persists over time. For the 
low-volume scenario, the resurfacing activity reduces predicted crash frequency in 2020 from  0.811 to 
0.780, which represents a 3.9% reduction. This improvement lasts—and actually grows—in subsequent 
years. In the high-volume scenario, the benefits are more pronounced and represent a 15.7% reduction in 
predicted crash frequency. This suggests that incorporating pavement condition into safety prediction 
models can not only improve prediction accuracy but also provides safety engineers with additional 
mechanisms they can use to improve safety performance (i.e., via maintenance activities). 
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CONCLUSIONS AND DISCUSSION 
Existing approaches to infrastructure management neglect the impact of infrastructure condition on safety 
performance, even though poorly maintained roadways can contribute to increased crash frequencies. This 
is perhaps because very few studies have quantified the impact of infrastructure condition on safety 
performance. Hence, this work developed models that relate safety (e.g., crash outcomes) to the roadway 
condition (e.g., IRI) for Pennsylvania. To do so, the PennDOT Roadway Management System database, 
the Pennsylvania Crash Information Tool, and some manually collected data from GoogleEarth and 
PennDOT's online video photolog system were used. SPFs that consider IRI were developed, considering 
previous SPFs that were developed using similar data for Pennsylvania. The results showed that including 

 
(a) Predicted total crash frequency in year 2019-2022 with low AADT 

 
(b) Predicted total crash frequency in year 2019-2022 with high AADT 

Figure 2.6 Predicted total crash frequency. 
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the IRI in the models improves model fit, shown through the use of CURE plots, and that IRI has a 
significant and positive impact on crash outcomes. In other words, as IRI increases, the possibility of a 
crash occurring increases. The results further suggest that the IRI has a different impact on total crash 
frequency as compared to fatal and injury crash frequency, and rear-end crashes. This is likely due to how 
roughness of the roadway can impact travel speeds. Further, to determine the impact of potential 
maintenance activities on safety, a deterioration model was developed that predicts future IRI as a function 
of current IRI, car and truck AADT, and access density. The results of this modeling show that truck AADT 
has a larger impact on future IRI than car AADT, which is expected. The one-year prediction model fits the 
data very well (R2=0.9998). Further tests on multi-year predictions suggest that predictions of IRI up to 9 
years can be considered good based on the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚.  
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C H A P T E R  3  

Including safety cost in the pavement 
maintenance, rehabilitation, and 
reconstruction decision making 

INTRODUCTION 

Background 
Implementing an efficient pavement maintenance, rehabilitation, and reconstruction strategy is an 
important part of infrastructure asset management. Well-timed preservation activities can help extend 
pavement life, maintain the pavement at a higher performance level, and lower the total lifecycle cost. 
Typically, MR&R activities are planned by considering agency cost, user cost, and salvage value at the end 
of service life. However, the safety impact of MR&R plans is usually not specifically considered. Previous 
statistical studies have shown that pavement condition, specifically roughness of the roadway, has a 
relationship with crash frequency. Therefore, it is necessary to consider the safety cost when planning 
MR&R activities.  
 

Literature 

Pavement MR&R planning aims at allocating a limited budget to maintain a road network within the service 
period to achieve the maximum performance of the pavement while controlling the negative impact on the 
environment. Based on the scope, it can be divided into project-level planning and network-level planning. 
A project-level planning tries to schedule a series of appropriate maintenance activities across the analysis 
window for one segment, while network-level planning considers a pavement network’s MR&R plan at the 
same time, which requires adding a spatial dimension to the schedule. A well-designed network-level 
planning can take advantage of the scale of economies by combining maintenance activities for adjacent 
segments when possible (Gao and Zhang, 2013).  
 
Successful MR&R planning requires taking multiple goals into consideration. A simple method to address 
these goals in the model is selecting a principal goal as the objective function; the remaining goals are 
considered as constraints, such as minimum pavement condition level or budget limitation (Gao and Zhang, 
2013). Another way to incorporate multiple goals in the model simultaneously is to assume the main 
objective function by weighting sub-objectives up, such as converging the different goals to the economic 
cost (Guo et al., 2020). However, the reliability of the weighted function is highly dependent on the 
selection of weight coefficients, and some of the objectives are unconvertable to the economic cost, such 
as safety impact and distraction. Even if the weight coefficients can be well-determined, studies show that 
the solution based on the weighted function is only a sub-optimal solution under certain circumstances 
(Chen and Zheng, 2021; Marler and Arora, 2004). Therefore, multi-objective optimization (MOO), which 
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considers multiple goals at the same time without converting them into the same unit, has gained more and 
more reputation over the past decades. The solution of a MOO model is usually expressed with a Pareto 
frontier, which consists of a set of optimal solution points instead of a single point. Thereby, the operators 
can retrieve their desired final solution from the frontier surface in different ways, such as absolute optimal 
solution method, weight method, deviation function, or knee point method (Chen and Zheng, 2021; Marler 
and Arora, 2004; Meneses and Ferreira, 2013). Due to the complexity of the MR&R planning, the heuristic 
methods, such as genetic algorithm, and particle swarm algorithm are usually adopted to solve the MOO 
model (Chen and Zheng, 2021; Xiong et al., 2012; Yu et al., 2015). 
 
The decision-making objectives in MOO models mainly consist of agency cost, user cost, performance 
level, environmental impact, and so on. The agency cost is the main goal that needs to be minimized in the 
planning, which is usually constrained by a fixed budget limitation (Torres-Machi et al., 2017). It is 
determined by the number of activities required in the analysis window and the expected unit cost of each 
activity (Guo et al., 2020). The user cost is hard to measure in practice, since it might not only include 
monetary costs like fuel consumption and traffic delay due to the roadwork or detour, but also needs to 
account for unmeasurable factors such as distraction to the driver, comfort level when driving on the road, 
and so on. Studies show that the user cost is the dominant factor in the MR&R planning, overweighting the 
other costs (Huang et al., 2021). Despite this, the additional fuel consumption result from the pavement 
roughness is widely used in the literature to account for the user cost (Ziyadi et al., 2018). Since the traffic 
sector is the second large contributor to greenhouse gas emissions, in which road construction and 
maintenance lead to high carbon dioxide emissions, there are more and more researchers taking the 
environmental impact into consideration in the MR&R planning process to achieve sustainable 
development. The environmental impact was mainly addressed in the construction and usage phases of a 
segment (Santos et al., 2015; Torres-Machi et al., 2018), but researchers also suggested that the impacts 
from raw materials extraction and the recycling phase also should be considered (Chen and Zheng, 2021). 
Other than these commonly considered objectives in MR&R planning, social equity, maintenance mileage, 
and work production are sometimes incorporated into consideration as well (France-Mensah et al., 2019; 
Xiong et al., 2012). 
 
Studies show that the pavement condition can significantly influence the crash frequency on the road (Justo-
Silva and Ferreira, 2018; Wang et al., 2022); however, the safety cost of MR&R planning is not studied in 
the literature yet. Yan concluded that the International Roughness Index or Present Serviceability Index are 
significant predictor variables in all types of accident models, and if IRI increased from 0-100 in/mi to 101-
200 in/mi, the crash frequency would increase by 1.64 times for all types of accidents (Chan et al., 2010). 
Yu suggests that pavement with IRI around 95 in/mi seems to suggest a safer roadway but a pavement with 
IRI higher than 143 in/mi looks susceptible to much higher crash frequencies (Elghriany et al., 2016). 
Despite the clear evidence that the pavement condition is tightly correlated to the safety cost, only a few 
studies considered the impact of safety cost in the MR&R planning process. Zaniewski considered the 
safety cost in the MR&R planning but only took the skid resistance into account for safety, which ignored 
the relationship between pavement condition and different types of crashes (Reigle and Zaniewski, 2002). 
Zheng suggests that safety indicators such as accident rate are missing from the current pavement MR&R 
planning, which will cause the user cost to be underestimated in the MOO system (Chen and Zheng, 2021).  

DATA DESCRIPTION 
To determine the MR&R planning activities, agency cost, user cost, and safety cost need to be estimated as 
a function of pavement condition. The pavement condition considered in this report is the International 
Roughness Index, since it has an impact on both user and safety costs. Further, the IRI measures the 
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difference in elevation of the road surface along with the longitudinal profiles and hence is thought to have 
less stochasticity and subjectivity in comparison to other indicators.  
 
IRI data, in units of in/mi, are obtained from PennDOT’s Roadway Management System database. The 
RMS database includes information for every roadway segment within Pennsylvania and records the annual 
traffic volume (i.e., AADT) and composition (i.e., truck percentage), cross-sectional information, number 
of access points, presence of a horizontal curve, and IRI value. Each segment has up to four IRI values 
recorded per year. The IRI values between 2006 to 2018 are cleaned and processed according to the 
literature (Wang et al., 2022).  
 
Next, the IRI is divided into eight categories as shown in Table 3.1. This categorization is chosen to aid in 
the development of a stochastic deterioration model. To develop these deterioration models, discrete 
categories are needed, since the models determine how long a given pavement can spend in any given 
category of IRI before failing. The categories are chosen as described next. The National Performance 
Management Measure divides IRI into three categories: 1) good condition for IRI less than 95.04 in/mi, 2) 
fair condition for IRI between 95.04 and 169.80 in/mi, and 3) bad condition when IRI is greater than 169.80 
in/mi. Hence, to stay relatively consistent with these criteria while obtaining even sizes of categories, first, 
a discretization at every 25 in/mi is adopted. Then, to achieve enough data in each group, IRIs from 25 to 
75 and from 225 to 300 are combined as one group, respectively. This resulted in eight unique categories. 
Finally, using the IRI data from the RMS data, the time each pavement spends in these IRI categories is 
extracted as the sojourn time. If the beginning or end time of a pavement being in a certain category is 
unknown, this is marked as a censored data (Lu et al., 2022). A brief statistical summary of the extracted 
sojourn time is shown in Table 3.1. 

Table 3.1. Correspondence between actual IRI and categorized IRI in this study. 

Actual IRI  
(in/mi) Categorized IRI Sojourn Count 

Average 
Sojourn  
(years) 

Sojourn 
Standard 
Deviation 

(years) 
25-75 IRI 2 2,819 3.82 2.25 

75-100 IRI 3 5,204 3.70 2.14 

100-125 IRI 4 5,126 3.29 1.89 

125-150 IRI 5 3,831 2.85 1.65 

150-175 IRI 6 2,376 2.47 1.38 

175-200 IRI 7 1,448 2.27 1.27 

200-225 IRI 8 807 2.25 1.26 

225-300 IRI 9 694 3.14 1.96 

METHODOLOGY  
The goal of this study was to include safety impacts in MR&R decision-making. To do so, crash frequency 
predicted as a function of pavement condition is included in pavement-level planning of MR&R. A multi-
objective optimization approach is used between the agency cost, user cost, and safety costs, since it is 
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difficult to assign a cost to safety. The goal of multi-objective optimization is to determine the series of 
actions and their timing that can minimize the objectives. Hence, the decision variable is the MR&R activity 
to be done (including do-nothing) every year. The objective function can be defined as: 
 

𝑓𝑓 = �𝐶𝐶𝐴𝐴𝐴𝐴 + 𝐶𝐶𝑈𝑈𝑈𝑈 + 𝐶𝐶𝑆𝑆𝑆𝑆

𝑁𝑁

𝑖𝑖=1

 
(3.1) 

 
where 𝑁𝑁 is the length of the analysis window, 𝐶𝐶𝐴𝐴𝐴𝐴 is the associated agency cost in year 𝑖𝑖, 𝐶𝐶𝑈𝑈𝑈𝑈 is the associated 
user cost in year 𝑖𝑖, and 𝐶𝐶𝑆𝑆𝑆𝑆 is the associated safety cost in year 𝑖𝑖. 
 
The overall process of how to evaluate the objective function is as follows. To determine the impact of the 
MR&R activity schedule on each of the cost components, a general deterioration model to describe the 
deterioration of IRI without an MR&R activity is developed. Further, assumptions based on the literature 
about the impact of different MR&R activities on IRI are considered. The deterioration model, combined 
with the impact of the MR&R activity, is then used to predict the IRI over years for a given set of MR&R 
actions and their timings. Next, the user cost, agency cost, and safety cost are calculated as a function of 
IRI.  
 
A genetic algorithm is used to evaluate different decision variables and calculate the expected total cost 
based on the given action series. This allows taking into consideration dynamic transition probabilities that 
are history dependent. A gene is designed to represent a series of actions over the analysis window, where 
each action is represented with a number, e.g., do-nothing is 0, the minor repair is 1, the major repair is 2, 
and rehabilitation is 3. The length of the gene represents the analysis window, and the sequence of numbers 
represents the sequence of actions to be taken each year. However, if every action is allowed every year, 
the total population of genes becomes very large. For example, when the analysis window is 50 years, the 
possible gene combination is up to 450, which significantly reduces the algorithm efficiency. Hence, in this 
paper, it is assumed that over the lifetime of infrastructure, assumed to be 50 years, at most 10 maintenance 
actions can be taken. It is assumed that in the remaining years no MR&R actions are taken.  
 
To further get the information about sub-costs so that the tradeoff between different sub-objectives can be 
explored, a Monte Carlo simulation is employed based on the best gene, e.g., best action series, from the 
genetic algorithm. A pavement condition pathway, which is sampled based on the transition probabilities 
after conducting the best action of each year, is acquired during each simulation, and the associated sub-
costs are calculated based on the specific sampled pathway. After 10,000 simulations, the average agency 
cost, user costs, safety cost, and salvage value are derived associated with the best gene. Note, as the number 
of Monte Carlo simulations increases, the sampled total cost converges to the corresponding objective 
function value of the best gene. 
 
Finally, to analyze the impact of safety costs on the MR&R planning, the Pareto optimality is drawn, which 
is defined as a situation in which no individual objects can be improved without compromising the other 
objectives in the multi-objective optimization problem. It is usually calculated by setting different weights 
to each objective and getting the optimal solution under each weight combination. The slope of the Pareto 
frontier represents the tradeoff ratio between objectives. In this study, a range of weights is set to the safety 
cost to explore the tradeoff between safety and maintenance actions when putting a different value on crash 
frequency.   
 
The deterioration model and the calculation of individual costs are presented next.  
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Deterioration model 
While different statistical distributions can be used to estimate the deterioration of an infrastructure element, 
a commonly used model is the accelerated failure time (AFT) Weibull model. The AFT-Weibull model has 
been shown to be better than most other candidates in terms of predictive accuracy and simplicity 
(Manafpour et al., 2018; Ashraf-Ul-Alam and Khan, 2021). The semi-Markov chain process, estimated 
based on the AFT-Weibull model, assumes the deterioration probability of an asset follows a Weibull 
distribution instead of the traditional exponential model, thus overcoming the memoryless drawback of the 
classical Markov chain process. The impact of covariates is incorporated into the model through the 
accelerated failure time (AFT) approach. Considering these advantages, the AFT-Weibull model is used in 
this study. The details about the AFT-Weibull model can be found in the previous study (Manafpour et al., 
2018). An AFT-Weibull model is estimated for each category of IRI using a maximum likelihood function. 
The details of the deterioration models are shown in Table 3.2. 

Table 3.2 Deterioration model coefficients. 

Model IRI 2 IRI 3 IRI 4 IRI 5 IRI 6 IRI 7 IRI 8 IRI 9 
Dist_2 -0.10* 0.52** 0.42** 0.22** - - - - 
Dist_3 0.19** 0.67** 0.34** - -0.12* 0.20* - - 
Dist_4 -0.73** 0.66** 0.15** -0.20** -0.34** -0.33** -0.33** -0.36** 
Dist_5 -0.58** 1.16** 0.57** 0.34** - - - - 
Dist_6 -0.72** 0.90** 0.94** 0.34** 0.27** - - - 
Dist_8 0.23** 1.43** 1.12** 0.61** 0.27** 0.23** 0.29** - 
Dist_9 - 1.59** 1.14** 0.74** 0.59** 0.60** 0.46** - 
Dist_10 - 0.61** 0.45** - - - - - 
Dist_11 0.73** - 0.92** 0.43** 0.26** 0.24* 0.48** - 
Dist_12 -0.39** 1.18** 0.73** 0.22** -0.16** - - - 
Access point density -0.003** - - - - - - -0.005 
Degree of curvature  
per mile - 0.006** 0.002** 0.002** - - - - 

AADT of truck 0.00 
036** 

0.00 
006 

-0.00 
023** 

-0.00 
020** 

-0.00 
019** 

-0.00 
022** 

-0.00 
024** 

-0.00 
093** 

Intercept 1.63** 2.08** 1.63** 1.69** 1.70** 1.59** 1.50** 2.86** 
𝑘𝑘  0.39** 0.70** 0.68** 0.67** 0.71** 0.73** 0.73** 0.70** 
C-index 0.60 0.74 0.68 0.65 0.63 0.63 0.61 0.64 

Note: ** denotes 95% confident level, * denotes 90% confident level 
 
The models for IRI 3 and IRI 4 had the highest accuracy in terms of C-index, since these two categories 
had the most available data. The results suggest that the district plays an important role in the deterioration 
model, since the natural and human environment as well as the available budget impact deterioration. The 
average annual daily truck traffic is negatively correlated to most of the IRI groups, indicating that higher 
truck traffic leads to lower expected life, which is consistent with expectation.  
 
The output of the AFT-Weibull model is the probability of a pavement deteriorating from one IRI level to 
the next level within a time increment ∆𝑡𝑡. A semi-Markov chain model is used to determine the probability 
of a pavement segment deteriorating to any lower 𝐼𝐼𝐼𝐼𝐼𝐼 in any given year. The probability of a pavement 
remaining in its original 𝐼𝐼𝐼𝐼𝐼𝐼, 𝑖𝑖, at time 𝑡𝑡, 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡), can be calculated as: 
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𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡) = 1 − 𝐹𝐹𝑖𝑖(𝑡𝑡) = 1 −  � 𝑓𝑓𝑖𝑖(𝑡𝑡′) 𝑑𝑑𝑑𝑑′
𝑡𝑡

0
 

(3.2) 

where 𝑆𝑆𝑖𝑖(𝑡𝑡) is the survival function of 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖, which represents the probability of pavement not failing by 
time 𝑡𝑡; 𝐹𝐹𝑖𝑖(𝑡𝑡) is the cumulative density function of the AFT-Weibull model of 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖; 𝑓𝑓𝑖𝑖(𝑡𝑡) is the PDF of 
AFT-Weibull model of 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖. Next, the PDF of a pavement segment deteriorating from IRI 𝑖𝑖 to 𝑗𝑗, 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡), is 
calculated as in Equation 3.3. Note, it is assumed that a pavement segment deteriorates from a small 𝑖𝑖 to a 
large 𝑗𝑗 incrementally, i.e., all intermediate IRI levels are visited.  
 

𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡) = �
𝑓𝑓𝑖𝑖(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑖𝑖 + 1

� 𝑓𝑓𝑖𝑖(𝑗𝑗−1)(𝑡𝑡′)𝑓𝑓𝑗𝑗−1(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑑𝑑′
𝑡𝑡

0
𝑖𝑖𝑖𝑖 𝑗𝑗 > 𝑖𝑖 + 1 

(3.3) 

 
Note, calculating the value of 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡) requires considering all possible transition combinations; therefore a 
multi-layer integral emerges and can be very complicated. Hence, a numerical calculation is recommended 
to get those values. Finally, the probability of a pavement segment deteriorating from 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 to 𝑗𝑗 or higher, 
𝑃𝑃𝑖𝑖𝑖𝑖…(𝑡𝑡), is calculated as in Equation 3.4. This is used to determine the probability of a bridge deck 
deteriorating from 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 to 𝑗𝑗, 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) as in Equation 3.5. 
 

𝑃𝑃𝑖𝑖𝑖𝑖…(𝑡𝑡) =  � 𝑓𝑓𝑖𝑖(𝑗𝑗−1)(𝑡𝑡′)𝐹𝐹𝑗𝑗−1(𝑡𝑡 − 𝑡𝑡′) 𝑑𝑑𝑑𝑑′
𝑡𝑡

0
 

(3.4) 

𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖𝑖𝑖… (𝑡𝑡) − 𝑃𝑃𝑖𝑖(𝑗𝑗+1)…(𝑡𝑡) (3.5 
 
Based on these equations, the transition matrix can be calculated. Figure 3.1 shows the transition 
probabilities when no preservation activities are performed.  
 
Further, three preservation actions are considered to maintain the pavement condition (i.e., minor 
rehabilitation, major rehabilitation, and reconstruction). These are assumed to have deterministic impacts. 
The minor rehabilitation is assumed to improve the pavement condition by one IRI level compared to do-
nothing; the major rehabilitation is assumed to improve the pavement condition by three IRI levels 
compared to do-nothing, and the reconstruction is assumed to be able to reset the all the pavement 
conditions to IRI 2. The transition metric after applying preservation actions is derived based on the 
transition probability of do-nothing in the first year as shown in Table 3.3 (e.g., the value of transition 
probabilities in Figure 3.1 when time 𝑡𝑡 = 1). 
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Figure 3.1. Transition probability calculations (only transition probability from IRI 2, IRI 3, IRI 5, 

and IRI 7 is demonstrated here for conciseness). 

Table 3.3 Transition matrix from AFT-Weibull of do-nothing in the first year. 
 IRI 2 IRI 3 IRI 4 IRI 5 IRI 6 IRI 7 IRI 8 IRI 9 

IRI 2 0.9104 0.0895 0.0001 0 0 0 0 0 
IRI 3 0 0.9955 0.0045 0 0 0 0 0 
IRI 4 0 0 0.9854 0.0146 0.0001 0 0 0 
IRI 5 0 0 0 0.975 0.0249 0.0001 0 0 
IRI 6 0 0 0 0 0.9655 0.0343 0.0002 0 
IRI 7 0 0 0 0 0 0.9577 0.042 0.0003 
IRI 8 0 0 0 0 0 0 0.9487 0.0513 
IRI 9 0 0 0 0 0 0 0 1 

 

Cost Estimation 
Three costs are considered to design an MR&R schedule that improves the general performance of a 
pavement: 1) agency cost, 2) user cost, and 3) safety cost. The agency cost represents the operating cost of 
the pavement agency for the regular maintenance, rehabilitation, and necessary reconstruction activities 
expenses, along with the salvage value that represents the recoverable cost or leftover benefit of an asset at 
the end of its lifecycle. The user cost estimates the travel cost of drivers in terms of fuel consumption under 
different pavement conditions. Finally, the safety cost predicts the crash frequency during the service life 
of a segment. 
  
The scope of this study is to demonstrate project-level MR&R planning for a specific pavement segment. 
Hence, an example segment is considered, with properties shown in Table 3.4.  
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Table 3.4 Segment attributes of the assumed study case. 

Attribute Value 

Segment length 1 mile 

AADT 3,196.11 vehicles/day 

Truck percentage 8.96 % 

Presence of a passing zone no 

Presence of shoulder rumble strips no 

Horizontal curve density 2.24 degrees/mile 

Degree of curvature per mile 17.25 degrees/mile 

Access point density 16.33 

Roadside hazard rating 4 or 5  

Distract 2 

Agency cost 

According to the Ontario Pavement Design and Rehabilitation Manual, there are three categories of 
pavement improvement activities: routine maintenance, rehabilitation, and reconstruction (Ontario Ministry 
of Transportation, 2013). Routine maintenance is a reactive, timed activity employed to ensure the basic 
function of pavement, such as cleaning of roadside ditches and structures, or maintenance of pavement 
markings and crack filling. These activities usually do not disturb traffic and costs are negligible compared 
to rehabilitation and reconstruction. Therefore, routine maintenance is treated as do-nothing in this study, 
and the associated agency cost is assumed to be zero. Rehabilitation is a series of activities that need to be 
employed when the pavement condition deteriorates to an unacceptable level. Based on the severity, it 
includes minor rehabilitation and major rehabilitation. Two types of minor rehabilitation activities are 
considered in this study: diamond grinding for the concrete top layer, and 2 inches of mill and fill for the 
asphalt top layer. Similarly, two types of major rehabilitation activities are considered: 4 inches of asphalt 
or concrete overlay based on the top layer type. Reconstruction is needed when the pavement becomes 
functionally useless. A typical reconstruction activity would be an 8- or 12-inch new asphalt or jointed plain 
concrete pavement (JPCP). The reconstruction cost is usually significantly higher than rehabilitation and is 
typically performed after two or three rehabilitation cycles. The expected costs of different activities are 
estimated based on an analysis of one year of publicly available bid data for highway projects, as shown in 
Table 3.5 (Guo et al., 2020; Swei et al., 2019).  
 
On the other hand, there is still some value to an asset at the end of its lifetime, which is its salvage value. 
The salvage value of the top layers and base layers can be determined independently. For the top layers, the 
remaining lifetime is estimated using the deterioration models and the salvage value is assigned 
proportionally to the remaining lifespan since the last reconstruction. For example, a brand-new top layer, 
e.g., in condition IRI 2, has an expected lifespan of 44.1 years. The salvage value of a pavement in IRI 2 is 
assumed to be the major rehabilitation cost, which is $261,501, while the salvage value of a top layer in 
condition IRI 4, which has an expected lifespan of 24.7 years, is proportional to the expected lifespan and 
equals $146,464. The salvage value of base layers is assumed to be a constant value and is determined as 
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the difference between major rehabilitation cost and reconstruction cost. These are included in the agency 
cost as negative numbers, since they actually represent a benefit. The salvage values are estimated as shown 
in Table 3.5. 

User cost 

The user cost reflects the satisfaction and comfort of drivers when driving on the road. Here, the fuel 
consumption per unit distance is assumed to be the main driver of user cost. An energy consumption 
regression model from the literature is adopted and formulated as Equation 3.6 (Ziyadi et al., 2018). 
 

𝐸𝐸(𝑣𝑣, 𝐼𝐼𝐼𝐼𝐼𝐼) =
𝑝𝑝
𝑣𝑣

+ (𝑘𝑘𝑎𝑎 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑑𝑑𝑎𝑎) + 𝑏𝑏 ∗ 𝑣𝑣 + (𝑘𝑘𝑐𝑐 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑑𝑑𝑐𝑐) ∗ 𝑣𝑣2 (3.6) 

where 𝐸𝐸(𝑣𝑣, 𝐼𝐼𝐼𝐼𝐼𝐼) is the expected energy consumption in units of 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚 when driving at average speed 
𝑣𝑣 𝑚𝑚𝑚𝑚ℎ on a pavement condition of 𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖𝑖𝑖/𝑚𝑚𝑚𝑚. The average speed is assumed to be 40 mph. The other 
variables are the model coefficients, which are provided in the literature. For a passenger car, 𝑘𝑘𝑎𝑎 = 0.67,
𝑑𝑑𝑎𝑎 = 2175.7,  𝑘𝑘𝑐𝑐 = 0.000281,𝑑𝑑𝑐𝑐 = 0.2186, 𝑝𝑝 = 33753, and 𝑏𝑏 =  −16.931; for a medium truck, 𝑘𝑘𝑎𝑎 =
0.918, 𝑑𝑑𝑎𝑎 = 9299.3,  𝑘𝑘𝑐𝑐 = 0.000133,𝑑𝑑𝑐𝑐 = 0.9742, 𝑝𝑝 = 109380, and 𝑏𝑏 =  −264.32. 
The expected energy consumption, 𝐸𝐸(𝑣𝑣, 𝐼𝐼𝐼𝐼𝐼𝐼), is first converged to gallon gasoline according to the U.S. 
Environmental Protection Agency. Then, the expected economic user cost in terms of fuel consumption can 
be derived as shown in Table 3.5 with the national average gasoline price of $3.853 per gallon.   
 

Safety cost 

The safety cost of a segment can be represented by the expected crash frequency. The negative binomial 
model for estimating crash frequency as a function of IRI developed in the previous section is used here. 
The expected fatal or injury crash frequencies for the case study presented in  
Table 3.5 under different pavement conditions are predicted using the estimated models. Note that the real 
impact of a traffic crash is profound and cannot be simply measured with a monetary number, and the 
recommended transfer rate between crash frequency and economic cost varies significantly from criterion 
to criterion; therefore, the converged fatal or injury crash frequencies will be used as one of the 
subobjectives in the multi-objective optimization, as shown in Table 3.5. Nevertheless, a basic reference of 
economic cost associated with one crash or injury crash frequency is adopted according to the Pennsylvania 
Crash Facts & Statistics in this study, but multiply by a weight 𝑤𝑤, varies from 0 to 5 when incorporating 
the safety cost in the objective function. The average economic loss of fatal and injury crashes is about 
$7,071,403, and is denoted as 𝐸𝐸𝑆𝑆 (Pennsylvania Department of Transportation, 2020).  
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Table 3.5. Subjective costs calculations for different pavement conditions . 
 IRI 2 IRI 3 IRI 4 IRI 5 IRI 6 IRI 7 IRI 8 IRI 9 
Do-nothing ($) 0 0 0 0 0 0 0 0 
Minor  
rehabilitation ($) 48,365 48,365 48,365 48,365 48,365 48,365 48,365 48,365 

Major  
rehabilitation ($) 87,014 87,014 87,014 87,014 87,014 87,014 87,014 87,014 

Reconstruction ($) 261,50
1 

261,50
1 

261,50
1 

261,50
1 

261,50
1 

261,50
1 

261,50
1 

261,50
1 

Car energy 
consumption (MJ) 7,996 8,118 8,199 8,281 8,362 8,444 8,525 8,688 

Truck energy 
consumption (MJ) 2,311 2,323 2,331 2,339 2,347 2,355 2,363 2,379 

Total energy 
consumption (MJ) 10,306 10,441 10,530 10,620 10,709 10,799 10,888 11,067 

Gas consumption 
(Gallon) 85 86 87 88 88 89 90 91 

User cost ($) 119,49
0 

121,04
8 

122,08
6 

123,12
4 

124,16
2 

125,20
0 

126,23
8 

128,31
4 

Safety cost 0.0626 0.0637 0.0645 0.0653 0.0661 0.0669 0.0677 0.0694 
Lifespan (years) 44.1 39.1 24.7 16.5 10.3 5.6 0 0 

Lifespan value ($) 261,50
1 

231,85
2 

146,46
4 97,840 61,076 33,206 0 0 

Base value ($) 174,48
6 

174,48
6 

174,48
6 

174,48
6 

174,48
6 

174,48
6 

174,48
6 

174,48
6 

Salvage value ($) 435,98
7 

406,33
9 

320,95
1 

272,32
7 

235,56
3 

207,69
3 

174,48
6 

174,48
6 

Note: All costs are calculated based on per lane per mile; an average gas price of $3.853 per gallon 
in 2021 is used in this table.  

RESULTS AND DISCUSSION 
A set of experiments were performed to explore the impact of safety costs on MR&R planning. The safety 
cost is incorporated into the model in the unit of converged fatal or injury crash number. A range of weights 
from 0 to 5𝐸𝐸𝑆𝑆 are set to the safety cost to explore the relationship between agency cost and safety cost when 
putting different values on crash frequency. 𝐸𝐸𝑆𝑆 is the estimated economic cost of a fatal crash based on the 
Pennsylvania Crash Facts & Statistics. The other sub-costs, including agency cost, user cost, and salvage 
value are included as the economic cost as Table 3.4 in the model directly. A 50-year time window is 
considered in this study. The agency cost, user cost, and crash frequency are estimated per mile per lane 
during the 50 years. 

Sensitivity to the starting condition 
When the pavements start under different conditions, the required action varies as we put different weights 
on the safety cost. In this study, the pavements are set to deteriorate starting from a relatively good 
condition, e.g., IRI 2 to IRI 4. As the safety cost weights increase from 0 to 5𝐸𝐸𝑆𝑆, the change of agency cost 
and safety cost varies as shown in Figure 3.2. From Figure 3.2, it can be found that as we put more value 
on predicted crash frequency, the necessary agency cost increased to maintain the pavement in a higher 
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condition and reduced the predicted crash frequency. A pavement that starts from a worse condition requires 
both higher agency costs and has a larger crash frequency, as expected. Note that the benefits to safety are 
diminishing after a safety cost weight of 2𝐸𝐸𝑆𝑆. After this point, the crash frequency can no longer be reduced 
even with more MR&R activities.  
 

 
   a. Agency cost                                                               b. Predicted crash frequency 

 

Figure 3.2. Impact of safety cost weight on agency cost as safety cost 

 

 

Figure 3.3. Pareto frontiers for pavements start from different conditions (Pareto optimal solutions 
of pavement starting from IRI 2 are marked in this plot) 

Pareto frontiers to show the tradeoff between agency cost and safety cost are shown in Figure 3.3 as dashed 
lines. The corresponding safety weights for pavement starting from IRI 2 are marked in the plot for 
illustration. From this plot, it can be seen that as the safety cost weight increases, the predicted crash 
frequencies reduce and agency costs increase. Further, it can be noted that if safety is not considered in 
MR&R planning (w=0), the predicted crash frequency is highest, as expected. As the safety cost is 
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considered more, initially the crash frequency can be decreased without much increase in agency cost. 
However, as the safety cost is weighed more, the agency cost needs to increase significantly more to reduce 
the crash frequency further.  
 
How the agency, user, and safety costs change as the weight of safety cost changes is shown in Table 3.6. 
From Table 3.6, it can be found that when only taking the agency cost into the objective function, the 
associated user cost and expected crash frequency are very high, since the optimal MR&R plan only adopts 
preservation activities in the end of the lifespan to achieve a higher salvage value. As the user cost is taken 
into consideration, the user cost and expected crash frequency decreased significantly. When adding the 
safety cost into the objective function with a weight of 𝐸𝐸𝑆𝑆, the predicted crash frequency decreased by 
0.0098 fatal or injury crashes, which led to the agency cost increasing to $241,825 for pavement deteriorated 
from IRI 2. In other words, when the safety cost is considered in the MR&R planning with an economic 
cost suggested by Pennsylvania Crash Facts & Statistics, the agency cost increased 32% for the pavement 
starting from IRI 2. The user costs also slightly decreased as the pavement condition increased. As more 
weight is put on crash frequency, the tradeoff between agency cost and crash frequency becomes more 
obvious. When the safety cost weight increases to 5𝐸𝐸𝑆𝑆, the reduction of predicted crash frequency is minor 
but leads to a significant agency cost increase. This proved that the safety cost will have a significant impact 
on the MR&R planning depending on the available budget and the expected total cost associated with 
crashes. 

Table 3.6. Subobjective costs of pavement start from IRI 2. 

Objective Function Agency 
Cost User Cost Crash 

Frequency Safety Cost 

Agency cost only $174,028 $6,139,113 3.3054 - 

Agency cost, User cost $183,744 $6,008,371 3.2051 - 

Agency cost, User cost, Safety cost (w = 1 𝐸𝐸𝑆𝑆) $241,825 $5,991,380 3.1963 $22,602,467  

Agency cost, User cost, Safety cost (w = 2 𝐸𝐸𝑆𝑆) $290,190 $5,987,283 3.1933 $45,162,878  

Agency cost, User cost, Safety cost (w = 3 𝐸𝐸𝑆𝑆) $290,190 $5,987,281 3.1933 $67,744,287  

Agency cost, User cost, Safety cost (w = 4 𝐸𝐸𝑆𝑆) $290,190 $5,987,041 3.1932 $90,320,788  

Agency cost, User cost, Safety cost (w = 5 𝐸𝐸𝑆𝑆) $338,555 $5,984,872 3.1916 $112,845,445  
 

To further explore the change in MR&R plans as the safety cost and starting condition vary, Figure 3.4 
visualizes the best MR&R plans with different safety cost weights for pavements starting from IRI 2 and 
IRI 4. For comparison, the case where user cost is excluded is also shown. It can be seen that ignoring the 
user cost leads to all the MR&R activities being scheduled at the end to improve salvage value. Further, as 
the safety weight increases, the maintenance schedule becomes more frequent and tends to use a series of 
minor rehabilitations regularly to maintain the pavement in a better condition. The safety cost has a similar 
impact to the user cost, which forces the MR&R plans to be more detailed and regular. As the safety cost 
weight increases, the necessary actions keep increasing. 
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* For visualization, minor rehabilitation, major rehabilitation, and reconstruction are counted as 1, 2, and 3 actions, 
respectively. ** “A only” denotes the best MR&R plan when only considering the agency cost and salvage value; 
“A&U” denotes considering the agency cost and user cost; “A&U&S” denotes considering the agency cost, user 
cost, and safety cost in the objective function but safety costs are considered in a weight of 𝑤𝑤𝐸𝐸𝑆𝑆.  

Figure 3.4. MR&R plans for different safety weights when starting at IRI 2 and IRI 8. 

  



 

 37 r3utc.psu.edu 

Sensitivity to the transition probability matrix 
The MR&R planning is determined by two major components, objective functions and transition 
probability. The safety impact on the MR&R plan is sensitive to the transition probability matrix as well. 
The transition probabilities are derived from the AFT-Weibull model. Based on this transition probability, 
the dominating action in the MR&R plan is minor rehabilitation. To explore the transition probability’s 
impact on these patterns, a made-up transition probability matrix is used as a comparison shown in Table 
3.7. The average deterioration rates of pavement to deteriorate to the worse condition are the same for the 
AFT-Weibull model-based transition matrix and the comparison case. The major difference is that the 
comparison removed the variation deteriorating to worse conditions by setting the probabilities of 
remaining the same IRI, deteriorating to one lower level, and deteriorating to two lower levels as 0.9, 0.07, 
and 0.03, respectively.  

Table 3.7. Comparison case of transition matrix of do-nothing in the first year. 
 IRI 2 IRI 3 IRI 4 IRI 5 IRI 6 IRI 7 IRI 8 IRI 9 
IRI 2 0.9 0.07 0.03 0 0 0 0 0 
IRI 3 0 0.9 0.07 0.03 0 0 0 0 
IRI 4 0 0 0.9 0.07 0.03 0 0 0 
IRI 5 0 0 0 0.9 0.07 0.03 0 0 
IRI 6 0 0 0 0 0.9 0.07 0.03 0 
IRI 7 0 0 0 0 0 0.9 0.07 0.03 
IRI 8 0 0 0 0 0 0 0.9 0.1 
IRI 9 0 0 0 0 0 0 0 1 

 
The corresponding transition matrix for minor, major rehabilitation, and reconstruction is derived in the 
same way, e.g., the minor rehabilitation is assumed to improve the pavement condition by one IRI level 
compared to do-nothing; the major rehabilitation is assumed to improve the pavement condition by three 
IRI levels compared to do-nothing, and the reconstruction is assumed to be able to reset all the pavement 
conditions to IRI 2. When the assumed comparison case in Table 3.7 is adopted, the best MR&R plan for 
pavement starting from IRI 2 is shown in Figure 3.5. 
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Figure 3.5. Best MR&R plans using assumed transition probability matrix. 

From Figure 3.5, it can be observed that the most frequent activity is major rehabilitation instead of minor 
rehabilitation, shown in Figure 3.4. The reason is that for the transition matrix from the AFT-Weibull 
model, the probability of a bridge starting from IRI 3 staying at IRI 3 in the first year is 0.9955. Based on 
the way we derive the transition matrix for minor reconstruction, there is 99.55% change for a pavement at 
IRI 3 improving to IRI 2 after conducting minor rehabilitation. Correspondingly, the probability of a 
pavement improving to IRI 2 in the comparison case is only 90%, while a major rehabilitation is able to 
improve this probability to 100%. Therefore, the AFT-Weibull model derived transition matrix has more 
benefits from minor rehabilitation, and the comparison case is more economically efficient when adopting 
major rehabilitation.  
 
The slight variation of the transition matrix from the AFT-Weibull model leads to a totally different MR&R 
planning and the safety impact on the best MR&R plan changed as well. Even though the AFT-Weibull 
model case is more realistic compared to the made-up transition matrix, it only models the transition 
probability when no maintenance activities are employed. The simplification of the transition matrix after 
maintenance activities leads to some unrealistic results. Further research and data collection to model the 
transition matrix after maintenance activities are needed in the future. 

Sensitivity to the average annual truck traffic 
Crash frequency is tightly correlated to the traffic volume. Therefore, the impact of safety cost on MR&R 
planning varies under different traffic loads. The average annual daily traffic (AADT) used for the 
experiment in Section 4.1 is the average AADT of all pavements in the dataset, which is 3,196 vehicles/day. 
In this section, two comparative case studies with low AADT levels (e.g., 1,100 vehicles/day) and high 
AADT levels (e.g., 11,000 vehicles/day) are analyzed to explore the impact of traffic load.   
For different AADT levels, the associated user cost, e.g., fuel consumption in this study, safety cost, e.g., 
predicted crash frequency for each unit length of a segment are different, and the transition matrix varies 
as well. The user cost and safety cost for different AADT levels are shown in Figure 3.6.  
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Figure 3.6. User cost and predicted crash frequency for different AADT levels. 

A pavement starting from IRI 2 is selected to test the influence of traffic load. The two comparison cases 
have the same parameters except for the AADT level. Figure 3.7 shows that agency cost changes as the 
safety cost increases.   
 

 
Figure 3.7. Agency costs change as safety weight varies for different AADT levels. 

From Figure 3.8, it can be found that the safety cost has a higher impact on the MR&R planning when the 
AADT is high. The agency cost increases more in the high AADT situation when taking safety costs into 
consideration. In fact, when the safety cost weight increased to 7 𝐸𝐸𝑆𝑆, the necessary number of actions 
increased from 4 to 9 in the high AADT situation, while it only increased to 6 in the low AADT condition. 
This is understandable, since as the traffic load increases, the predicted crash frequency increases as well. 
This will push the agent to conduct more maintenance activities to improve the pavement condition, thereby 
reducing the safety cost. 
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C H A P T E R  4  

Conclusions 

This study first developed a safety prediction model that considers IRI, and then explored the impacts of 
safety on MR&R planning.  
 
The results of the safety prediction model that considers IRI suggest that if traffic is low (e.g., low AADT), 
the errors associated with not considering IRI in crash prediction are small (e.g., between 1% and -4 % for 
low and high truck percentages, respectively). However, for roadways with large AADT, not considering 
IRI can lead to larger errors in crash prediction (e.g., between -5% and -21% for low and high truck 
percentages, respectively). Further, the results also show that maintenance activities that reduce IRI can 
significantly reduce crash outcomes. 
  
The results of incorporating safety into MR&R activities show that as more weight is put on the safety cost, 
the required maintenance activities increase so that the pavement can maintain a good condition. 
Specifically, when adding the safety cost into the objective function with a weight of 𝐸𝐸𝑆𝑆, the predicted crash 
frequency decreased by 0.0088 fatal or injury crashes, which led to the agency cost increasing to $241,825 
for pavement deteriorated from IRI 2. In other words, when the safety cost is considered in the MR&R 
planning with an economic cost suggested by Pennsylvania Crash Facts & Statistics, the agency cost 
increased 32% for the pavement starting from IRI 2. The optimal MR&R plans suggested that one extra 
maintenance activity is needed in 50 years of MR&R planning when considering the cost of crashes in an 
economic manner for pavements starting from IRI 2. This indicates that traffic safety has a higher impact 
on worse condition pavement MR&R planning compared to that of pavement in good condition. The results 
also show that the impact of safety on MR&R planning is highly sensitive to the transition matrixes. A 
slight variation of transition probability could lead to different preferences for maintenance activities. 
Therefore, a well-performed deterioration model is critical in MR&R planning. Finally, this study examined 
the impact of safety costs on MR&R planning for segments with different traffic loads. More additional 
maintenance activities are needed for segments with higher traffic load compared to segments with low 
AADT. 
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